Pearson Edexcel

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International GCSE In Mathematics B (4MB1)
Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021
Question Paper Log Number P66009A
Publications Code 4MB1_02_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If the final answer is wrong always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used. If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Summary of changes from Provisional Mark Scheme

Question Number	Summary of change
10b	Alternative methods using intersecting secants for 10(b) leading to awrt 29 (very common). Identical marking structure but slightly different at the end when working out the area of triangle $A B F$. Method 1 M1 A1 - as per Method I for getting to either $B D=6.8$ or $F B=\mathbf{9 . 8}$ $\frac{\sin (F A B)}{" 9.8 "}=\frac{\sin (18+" 39 ")}{4.9+3.5} \Rightarrow F A B=78.08334293 \ldots$ $A F B=180-F A B-(18+" 39 ")=44.91665707 \ldots \quad$ M1 for angle AFB. $A=\frac{1}{2}(" 9.8 ")(3.5+4.9) \sin (" 44.9 ")$ M1 (dependent on both previous M marks) for complete method for finding the required area of triangle $A B F$. $=29.062148 \ldots$ A1 for 29 or better Method 2 M1 A1 - as per Method I for getting to either $B D=6.8$ or $F B=9.8$ $\frac{\sin (F A B)}{" 9.8 "}=\frac{\sin (18+" 39 ")}{4.9+3.5} \Rightarrow F A B=78.08334293 \ldots$ $A F B=180-F A B-(18+" 39 ")=44.91665707 \ldots \quad$ M1 for angle AFB. $\begin{aligned} & \frac{A B}{\sin A F B}=\frac{4.9+3.5}{\sin (18+" 39 ")} \Rightarrow A B=7.071967199 \ldots \\ & A=\frac{1}{2}(A B)(3.5+4.9) \sin (F A B) \text { or } A=\frac{1}{2}(A B)(" 9.8 ") \sin (18+" 39 ") \end{aligned}$ M1 (dependent on both previous M marks) for complete method for finding the required area of triangle $A B F$. $=29.062148 \ldots$ A1 for 29 or better

Question	Working	Answer	Mark	Notes
1(a)		56170	1	B1
(b)	$\begin{aligned} & 1.368 \times 10^{9}-2.144 \times 10^{7} \text { or } \\ & 1346560000 \end{aligned}$			M1 for evidence of the correct subtraction (so M0 for $2.144 \times 10^{7}-1.368 \times 10^{9}$ unless recovered later) or for a correct answer (to at least 3 significant figures) in non-standard form (e.g., $1346560000,13.4656 \times 10^{8}, 1350000000$, etc.). The correct answer implies this mark
		1.34656×10^{9}	2	A1 allow answers which round to (awrt) 1.35×10^{9}
(c)	$\frac{5.617 \times 10^{4}}{2.166 \times 10^{6}} \text { or } 0.02593 \ldots$			M1 for evidence of division of the correct two values (condone for M1 $\frac{2.166 \times 10^{6}}{5.617 \times 10^{4}}$) or a correct answer (to at least 3 significant figures) in non-standard form (e.g., $0.0259,0.259 \times 10^{-1}$, 0.0259326 , etc.) or for 2.59×10^{-n} where n is a positive integer
		2.59×10^{-2}	2	A1 for awrt 2.59×10^{-2} (e.g., $2.593259464 \times 10^{-2}$ scores both marks, but M1A0 for 2.6×10^{-2} if more accurate answer not seen)

2	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+2 a x+b$			M1 differentiating with at least 1 non-zero term correct.
	$\begin{aligned} & 3 \times(2)^{2}+2 a \times(2)+b=9.8 \\ & \text { or } 4 a+b=-2.2 \text { oe } \end{aligned}$			M1 dep on $1^{\text {st }} \mathrm{M}$ mark substitute in $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and equating to 9.8 (allow any equivalent, e.g., $12+4 a+b=9.8$)
	$\begin{aligned} & 6=8+4 a+2 b+8 \\ & \text { or } 2 a+b=-5 \text { oe } \end{aligned}$			M1 substitute in $x=2$ and $y=6$ into $y=x^{3}+a x^{2}+b x+8$
	$\begin{aligned} & 2 a=5-2.2 \text { or } \\ & b=-10+2.2 \end{aligned}$			M1 dep on 2nd and 3rd M marks. Correct method (but allow one sign slip) for eliminating a or b from their simultaneous equations Elimination method (oe with coefficients of either a or b the same) e.g. $\begin{gathered}2 a+b=-5 \\ 4 a+b=-2.2\end{gathered} \Rightarrow(4 a+b)-(2 a+b)=-2.2-(-5)$ (so for this set of equations the candidate must be subtracting the two equations) or e.g. $\begin{aligned} & 4 a+2 b=-10 \\ & 4 a+b=-2.2 \end{aligned} \Rightarrow(4 a+2 b)-(4 a+b)=-10-(-2.2)$ Substitution method $\text { e.g. } b=-5-2 a \Rightarrow 4 a+(-5-2 a)=-2.2$ or e.g. $a=\frac{1}{2}(-5-b) \Rightarrow 4\left(\frac{-5-b}{2}\right)+b=-2.2 \text { (or equivalent) }$ This mark can be implied by either a correct value for a or for b. Allow by use of matrices.
		$\begin{gathered} a=1.4 \\ b=-7.8 \end{gathered}$	5	A1 (oe e.g. $a=\frac{7}{5}, b=-\frac{39}{5}$) dependent on all four M marks Correct answers with no working scores no marks

$\begin{gathered} 3 \text { (a) } \\ \text { (i) } \end{gathered}$	$4 x^{2}+18 x+24=160$ oe			M1 adding all the subsets together and equating to 160 . Need not be simplified (but if all 7 terms not shown explicitly then need to see at least $\left.4 x^{2}+18 x+24=160\right)$ Must see the 160 e.g. $4 x^{2}+18 x+24-160=0$ For reference (if fully un-simplified): $\begin{aligned} & 8 x+\left(\frac{5}{2} x+7\right)+\left(x^{2}+9\right)+(4 x-1)+\left(\frac{3}{2} x+8\right)+\left(2 x^{2}+4\right) \\ & +\left(x^{2}+2 x-3\right)=160 \end{aligned}$
		$2 x^{2}+9 x-68=0$		A1 simplifying to the given 3 term quadratic (at least one intermediate line from initial line of working to given answer) - must include $=0$ (allow $0=2 x^{2}+9 x-68$) so all terms on one side equal to zero
(ii)	$(2 x+17)(x-4)[=0]$ oe			M1 correct method for solving the given 3 term quadratic - either by formula, completing the square or factorising. By factorising: brackets must expand to give 2 out of 3 correct terms By formula: correct substitution into fully correct formula (allow 1 sign error) By completing the square: must see $2\left(x+\frac{9}{4}\right)^{2} \pm \ldots[=0]$ Either correct value of $x\left(x=-\frac{17}{2}\right.$ or $\left.x=4\right)$ can imply this mark NB anything appearing in square brackets [..] is not required
		$x=4$	4	1 (A0 if $x=-\frac{17}{2}$ given as a final answer too)
(b)	$\frac{\frac{3 \times 4 "}{2}+8}{3 \times 44^{2}+7.5 \times 44+8} \text { oe }$			M1 for either $\frac{\frac{3}{2} x+8}{\left(\frac{3}{2} x+8\right)+(4 x-1)+\left(2 x^{2}+4\right)+\left(x^{2}+2 x-3\right)}$ oe or for an equivalent expression with their value of x (which must be a positive integer) - if value for x substituted then numerator must be less than 160
		$\frac{7}{43}$	2	A1 oe exact value (A0 if non-exact answer e.g., 0.163 given and exact answer not seen) - award M1A0 if $7 / 43$ seen in working (but not given as final answer)

4(a)		$-2 \mathbf{a}+5 \mathbf{b}$	1	B1 oe (e.g., $5 \mathbf{b}-2 \mathbf{a}$) allow vectors not underlined throughout the question
(b) (i)	$\begin{aligned} & \overrightarrow{\overrightarrow{O C}}=5 \mathbf{b}+6 \mathbf{a}+5 \mathbf{b} \text { or } \\ & \overrightarrow{O C}=6 \mathbf{a}+10 \mathbf{b} \end{aligned}$			M1 for finding either $\overrightarrow{O C}$, possibly seen as part of another vector e.g., $\overrightarrow{O P}$ where for reference: $\overrightarrow{O P}=\frac{1}{5}(5 \mathbf{b}+6 \mathbf{a}+5 \mathbf{b})$ or for $\overrightarrow{A C}=-2 \mathbf{a}+5 \mathbf{b}+6 \mathbf{a}+5 \mathbf{b}(=4 \mathbf{a}+10 \mathbf{b})$
	$\overrightarrow{A P}=-2 \mathbf{a}+\frac{1}{5}(" 6 \mathbf{a}+10 \mathbf{b} ")$ or $\overrightarrow{P B}=-\frac{1}{5}(" 6 \mathbf{a}+10 \mathbf{b} ")+5 \mathbf{b}$ oe			M1 for finding either $\overrightarrow{A P}$ or $\overrightarrow{P B}$ (need not be simplified) oe (e.g., $\overrightarrow{P A}$ or $\overrightarrow{B P}$) $\begin{aligned} & \text { e.g., } \overrightarrow{A P}=\overrightarrow{A C}+\overrightarrow{C P}=-2 \mathbf{a}+5 \mathbf{b}+6 \mathbf{a}+5 \mathbf{b}-4\left(\frac{6}{5} \mathbf{a}+2 \mathbf{b}\right)\left[=-\frac{4}{5} \mathbf{a}+2 \mathbf{b}\right] \\ & \overrightarrow{P B}=\overrightarrow{P O}+\overrightarrow{O A}+\overrightarrow{A C}+\overrightarrow{C B}=-\left(\frac{6}{5} \mathbf{a}+2 \mathbf{b}\right)+2 \mathbf{a}+4 \mathbf{a}+10 \mathbf{b}-6 \mathbf{a}-5 \mathbf{b} \\ & \quad\left[=-\frac{6}{5} \mathbf{a}+3 \mathbf{b}\right] \text { or for } \overrightarrow{A P}=\left(\frac{1}{5} \overrightarrow{A C}+\frac{4}{5} \overrightarrow{A O}\right)=\frac{1}{5}(" 4 \mathbf{a}+10 \mathbf{b} ")+\frac{4}{5}(-2 \mathbf{a}) \end{aligned}$
	$\begin{aligned} & \overrightarrow{A P}=-\frac{4}{5} \mathbf{a}+2 \mathbf{b}=\frac{2}{5} \overrightarrow{A B} \text { or } \\ & \overrightarrow{P B}=-\frac{6}{5} \mathbf{a}+3 \mathbf{b}=\frac{3}{5} \overrightarrow{A B} \text { or } \\ & \overrightarrow{A P}=-\frac{4}{5} \mathbf{a}+2 \mathbf{b}=\frac{2}{3} \overrightarrow{P B} \text { oe } \end{aligned}$			A1cso showing multiple using any two of $A P, B P, A B$ (or $P A, P B, B A$ or a mixture of the two e.g., $A P$ with $B A$) oe, e.g., $\overrightarrow{A B}=\frac{5}{2} \overrightarrow{A P}$ or $\overrightarrow{A P}=\frac{2}{3} \overrightarrow{P B}$ or $\overrightarrow{A B}=\frac{5}{3} \overrightarrow{B P}$ or $\overrightarrow{A B}=-\frac{5}{3} \overrightarrow{P B}$ or $\overrightarrow{A P}=-\frac{2}{3} \overrightarrow{B P}$ or $\overrightarrow{A B}=-\frac{5}{2} \overrightarrow{P A}$ etc.
		$A P$ and $A B$ are parallel with the point A in common on each line \therefore collinear		A1 for a comment that one is a multiple of the other (oe e.g. that they are parallel) and that there is a common point on each of the two lines (so if $\overrightarrow{A B}, \overrightarrow{A P}$ used then must mention that A is the common point, if $\overrightarrow{P B}, \overrightarrow{A B}$ used then must mention that B is the common point, etc.)
(b) (ii)		2:3	5	B1 oe Accept $m=2$ and $n=3$ oe (provided that m and n are in the ratio $2: 3$ e.g., $1: 1.5,4: 6$, or stating $m=1 n=1.5$, etc.)

5	$\begin{aligned} & 2 x^{2}=11-3(4 x-5)^{2} \text { or } \\ & 2\left(\frac{5+y}{4}\right)^{2}=11-3 y^{2} \end{aligned}$			M1 for correct substitution of the linear equation $4 x-y=5$ into the quadratic equation $2 x^{2}=11-3 y^{2}$ to form an (unsimplified) quadratic equation in either x or y. This mark can be implied by the second M mark.
	$2 x^{2}=11-3\left(16 x^{2}-40 x+25\right)$ or $2\left(\frac{25+10 y+y^{2}}{16}\right)=11-3 y^{2}$			M1 for correct expansion of either their $(4 x-5)^{2}$ or $\left(\frac{5+y}{4}\right)^{2}$ in correct equation (not dependent on previous M mark)
	$\begin{aligned} & 25 x^{2}-60 x+32[=0] \text { or } \\ & 25 y^{2}+10 y-63[=0] \end{aligned}$			A1 for a correct 3 term quadratic in either x or y dep on both previous M marks (oe e.g., $50 x^{2}-120 x+64[=0], 50 y^{2}+20 y-126[=0]$, etc. look out for all signs reversed)
	$\begin{aligned} & (5 x-4)(5 x-8)[=0] \text { or } \\ & (5 y-7)(5 y-9)[=0] \end{aligned}$			M1 correct method for solving their 3-term quadratic - either by formula, completing the square or factorising. By factorising: brackets must expand to give 2 out of 3 correct terms By formula: correct substitution into fully correct formula (allow 1 sign error). By completing the square: must see e.g., $25\left(x-\frac{6}{5}\right)^{2} \pm \ldots[=0]$
	$\begin{aligned} & 4 \times " 0.8 "-y=5 \text { or } \\ & 4 \times 1.6-y=5 \text { or } \\ & 4 x-(-1.8)=5 \text { or } \\ & 4 x-1.4=5 \text { oe } \end{aligned}$			M1 indep substituting their two x values into either equation leading to values for y or vice versa (not dependent on any previous M marks) - this mark can be implied by correct values (if no working seen). This mark can be implied by both correct pairs of values.
		$\begin{gathered} (0.8,-1.8) \\ (1.6,1.4) \end{gathered}$	6	A1 for both correct pairs of x and y values (oe e.g., $x=\frac{4}{5}, y=-\frac{9}{5}$ and $x=\frac{8}{5}, y=\frac{7}{5}$) This mark is dependent on all previous marks. Correct answer(s) with no working scores no marks

6(a)		7, -2, -5, 9.25	2	B2 -1 each error or omission (to a maximum of 2 marks)
(b)		Points plotted	1	B1ft follow through their 4 values from (a) (allow $+/-$ one small square accuracy in plotting on the given axes in the answer book)
(c)	Points joined with smooth curve except for $x=-0.5$ and 0.5 with minimum at $(1,7)$		1-1	B1 for joining their eight points (4 points on the positive side of the x-axis joined and the other 4 points on the negative side of the x-axis joined) with a smooth curve (B 0 if line segments between points) B0 if points at 0.5 and -0.5 connected Condone no curve between -0.5 and 0.5 - if curve drawn in this interval, then as $x \rightarrow 0^{+}, y \rightarrow+\infty$ and $x \rightarrow 0^{-}, y \rightarrow-\infty$
(d)		-2.6	1	B1 ft where their graph crosses the x-axis, but their value of x must be to at least one decimal place and, in the interval, $-4 \leq x \leq-2$ (For reference: $x=-2.594313 \ldots$ - if value of x clearly comes from solving on a calculator then B0). If curve crosses the x-axis more than once, then B0
(e)	Line drawn through $(0,1.5)$ with positive gradient			M1 for straight line passing through $(0,1.5)$ with positive gradient - line need not intersect their curve (and allow this mark if curve not attempted)
		-1.2, 1.1 and 3.1	3	A2, -1 for each error/omission (up to a maximum of 2 marks). Must have a drawn a line and curve. The values given to at least one decimal place and must lie in the intervals $-1.4 \leq x \leq-1, \quad 1 \leq x \leq 1.4 \quad$ and $\quad 2.8 \leq x \leq 3.2$ and must follow from their graph. (For reference: $x=-1.174833 \ldots, 1.111418 \ldots, 3.063415 \ldots$ - if values of x clearly come from solving on calculator, then A0)

8(a)		$155<h \leqslant 160$	1	B1 (allow intention of this interval e.g. give benefit of doubt if interval is given as $155<h<160$)
(b)	$\begin{aligned} & \hline(145 \times 5)+(152.5 \times 8)+ \\ & (157.5 \times 11)+(162.5 \times 6)+ \\ & (167.5 \times 12)+(180 \times 3) \\ & \hline \end{aligned}$			M2 for at least 5 (of the 6) correct products added together or M1 for the use of any value in interval (including end points) for at least 4 (of the 6) products added together
	$\frac{" 7202.5 "}{45}$			M1dep on at least 1 of the previous M marks for dividing by 45
		160.1	4	A1 awrt 160.1 (for reference: $160.055555 \ldots$..) allow exact e.g., $\frac{2881}{18}$
(c)		$\frac{2}{3}, \frac{5}{9}, \frac{2}{5}$	1	B1 all 3 correct (must be using fractions but allow exact equivalents, e.g., $\frac{4}{6}$ for $\frac{2}{3}$ on first branch)
(d)	$\frac{21}{45} \times \frac{1}{3} \times \frac{4}{9} \text { or } \frac{21}{45} \times " \frac{2}{3} " \times \frac{3}{5}$			M1 for calculating the probability that a person has a height of more than 160 cm and fair hair with either eye colour
	$\left(\frac{21}{45} \times \frac{1}{3} \times \frac{4}{9}\right)+\left(\frac{21}{45} \times " \frac{2}{3} \times \times \frac{3}{5}\right)$			M1 for completely correct method (with their probability (between 0 and 1) for not blue eye colour from part (c)) or M2 for using the complement e.g. $\frac{21}{45} \times\left(1-\left(\frac{1}{3} \times{ }^{\prime} \frac{5}{9}{ }^{\prime \prime}\right)-\left(\frac{2}{3} \times{ }^{\prime 2} \frac{2}{5}^{\prime \prime}\right)\right)$
		0.2558....	3	A1 0.26 or better ($0.255802 \ldots$...) or exact (e.g., $\frac{518}{2025}$) SC for 1 mark only for $\left(\frac{1}{3} \times \frac{4}{9}\right)+\left(\frac{2}{3} \times \frac{3}{5}\right)=\frac{74}{135}$ or for $1-\left(\frac{1}{3} \times \frac{5}{9}\right)-\left(\frac{2}{3} \times \frac{2}{5}\right)=\frac{74}{135}$ or 0.55 or better ($0.548148 \ldots$) for not including the height of more than $160 \mathrm{~cm}-$ also allow this SC mark for $k\left(\frac{74}{135}\right)$ where $0<k \leq 1$

9				
(a)		$x=1$ drawn		M1 this mark can be implied by correct triangle B or for a completely correct reflection in the line $y=1$, or for two of the three vertices correct
		Triangle B	2	A1 (vertices at $(-9,4),(-5,4),(-8,6)$)
(b)	$(-2,1),(-1,3),(2,1)$			B1ft moving their triangle $B 7$ units to the right.
		Triangle C	2	B1ft moving their triangle $B 3$ units down (if correct vertices of triangle C are at $(-2,1),(2,1),(-1,3))$
(c)	$\frac{\left(\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right) \cup\left(\begin{array}{ccc}-2 & 2 & -1 \\ 1 & 1 & 3\end{array}\right) "}{}$			M1 coordinates in second matrix may be in any order. Follow through the coordinates of their triangle C
	$\left(\begin{array}{ccc}-4 & 4 & -2 \\ -2 & -2 & -6\end{array}\right)$			A 1 ft for correct working out product of their $\left(\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right)$ "($\left(\begin{array}{ccc}-2 & 2 & -1 \\ 1 & 1 & 3\end{array}\right)$ "
		Triangle D	3	A1 cao (vertices at $(-4,-2),(-2,-6),(4,-2)$) - award full marks if drawn correctly
(d)	Enlargement SF - 2 Centre (6, 2)		3	M1 (following marks cannot be awarded without 'enlargement') condone 'enlarge/enlarged' - if not a single transformation then M0 A1 (must see either 'SF', 'scale factor' or 'factor') A1 (word 'centre' not required e.g. 'about (6,2)' is sufficient)

10(a)	$\angle D A B=180-108=72^{\circ}$ Opposite angles of a cyclic quadrilateral are supplementary (or sum to $\left.180^{\circ}\right)$			Angles throughout part (a) may be shown on Figure 2. Reasoning only counts towards the final B mark (so therefore are independent of the first four marks in this part) M1 for calculating angle $D A B$
	$\angle A O B=102^{\circ}$ angle at the centre is twice (oe) the angle at the circumference			M1 for calculating angle $A O B$
	$\begin{aligned} & \angle O B A(\text { or } \angle O A B)=\frac{180-" 102^{\prime \prime}}{2}\left[=39^{\circ}\right] \\ & \frac{\text { Angle sum of a triangle is } 180^{\circ} \text { and base }}{\text { angles of an isosceles triangle are equal }(O A} \\ & =O B) \end{aligned}$			M1 dep for correct method for calculating either angle $O B A$ or $O A B$ - dependent on previous M mark
	$\angle O B D=180-51-72-39=18^{\circ}$ Angle sum of a triangle is 180° or $\angle O B D=360-51-33-258=18^{\circ}$ Angle sum of a quadrilateral and angles at a point are 360°	shown		A1 (degree symbol not required) - dependent on all previous M marks (note that answer is given so sufficient working must be shown)
			5	B1 for 3 (of the 5 or possibly 6) correct reasons - must include underlined (or the exact mathematical equivalent) words. Allow angles for angle, etc. and allow equivalent symbols, e.g., \measuredangle for angle, Δ for triangle, etc.

Alternative 1 for 10(a)		Angles throughout part (a) may be shown on Figure 2. Reasons only count towards the final B mark (so are independent of the first four marks in this part)
$\angle D A B=180-108=72^{\circ}$ Opposite angles of a cyclic quadrilateral are supplementary (or sum to $\underline{180^{\circ}}$)		M1 for calculating angle $D A B$
$\angle D O B=" 72 " \times 2\left[=144^{\circ}\right]$ angle at the centre is twice (oe) the angle at the circumference		M1 dep for correct method for finding $\angle D O B$ - dependent on previous M mark
$\angle O B D=\frac{180-" 144 "}{2}$ Angle sum of a triangle is 180° and base angles of an isosceles triangle are equal $(O B=O D)$		M1 for correct method for finding $\angle O B D$ - dependent on both previous M marks
$\text { Or } \angle O B D=\frac{180-144}{2}=18^{\circ}$	shown	A1 (degree symbol not required) - dependent on all previous M marks (note that answer is given so sufficient working must be shown)
		B1 for 3 (of the 4) correct reasons - must include underlined (or the exact mathematical equivalent) words. Allow angles for angle, etc. and allow equivalent symbols, e.g., \measuredangle for angle, Δ for triangle, etc.

Alternative 2 for 10(a)		Angles throughout part (a) may be shown on Figure 2. Reasons only count towards the final B mark (so are independent of the first four marks in this part)
$\angle A O B=102^{\circ}$ angle at the centre is twice (oe) the angle at the circumference		M1 for calculating angle $A O B$
$\angle O B A(\text { or } \angle O A B)=\frac{180-" 102^{2}}{2}\left[=39^{\circ}\right]$ Angle sum of a triangle is 180° and base angles of an isosceles triangle are equal $(O A=O B)$		M1 dep for correct method for calculating either angle $O B A$ or $O A B$ - dependent on previous M mark
$\angle A C B=51$ (angles in the same segment are equal) $\Rightarrow \angle A C D=57$ and therefore $\angle D B A=57$ (angles in the same segment are equal)		M1 for calculating angle $D B A$
$\angle O B D=57-\left(\frac{180-102}{2}\right)=57-39=18^{\circ}$	shown	A1 (degree symbol not required) - dependent on all previous M marks (note that answer is given so sufficient working must be shown)
		B1 for 3 (of the 5) correct reasons - must include underlined (or the exact mathematical equivalent) words. Allow angles for angle, etc. and allow equivalent symbols, e.g., \measuredangle for angle, Δ for triangle, etc.

Method I: Using intersecting secants to find FB or $B D$				Note that lengths given in the question are not exact and so therefore there are a number of valid areas for triangle $A B F$ There are many ways of finding the required area - in essence for Method I the first two marks are for calculating the length of either $F B$ or $B D$, the third mark is for setting up a correct equation for either $A B$ or $A D$ and the final two marks are for a complete, correct method for calculating the area of triangle ABF NB an answer which rounds to 23 or $\mathbf{2 4}$ with no obvious incorrect working scores full marks. Note that using $\frac{1}{2} \times 8.4 \times A B$ (therefore assuming angle $F A B$ is 90°) which for reference gives 23.3375... can score M1A1M1M0A0 maximum
Case 1: Finding length $A B$				
(b)	$F E \times F A=F D \times F B \text { oе }$ or $3.5 \times 8.4=3.0 \times F B$ oe			M1 correct method for finding $F B$ or $B D$ e.g. $3.5 \times 8.4=3.0 \times(3+B D)$
- $\quad F B=9.8$				A 1 or for $B D=6.8$
	$\frac{A B}{\sin 51}=\frac{" 9.8 "-3}{\sin 72} \quad(\text { or } A B=\text { awrt } 5.56)$			M1 setting up correct sine rule formula to find length $A B$ (For reference: $A B=5.556549424 \ldots$.
	$\text { Area }=\frac{1}{2} \times " 5.56 " \times " 9.8 " \times \sin (18+" 39 ")$			M1 dep (on both previous M marks) for the correct method for finding area of triangle $A B F$
		23	5	A1 (allow 23 or better from correct working) - For reference: 22.83456086... Note for last the two marks if using Heron's formula then M1 for Area $=\sqrt{s(s-8.4)(s-9.8)(s-A B)}$ where $s=\frac{1}{2}(8.4+9.8+A B)$ then A1 for the Area $=$ awrt 23. For reference: $23.29849718 \ldots$

Case 2: Finding length $A D$ using a quadratic in $A D$		First two marks as in Case 1
$A D^{2}-(6 \cos 129) A D-61.56=0$		M1 setting up a quadratic equation in $A D$ from the cosine rule (For reference: $A D=6.182007686 \ldots$..)
$\begin{aligned} & \text { Area }=\text { Area of } \triangle A B D+\text { Area of } \triangle A D F \\ & =\frac{1}{2} \times A D \times " 6.8 " \times \sin (51)+\frac{1}{2} \times A D \times 3 \times \sin (180-51) \end{aligned}$		M1 dep (on both M marks) for the correct method for finding the area of triangle $A B F$
	$\begin{gathered} 23 \text { or } \\ 24 \end{gathered}$	A1 (allow 23 or 24 or better) - For reference for the method above the area is $23.5411793 \ldots$ Note for the last two marks that there are a number of ways of calculating the area of triangle $A B D$ e.g. Area $A B D$ $=\frac{1}{2} \times A D \times A B \times \sin 72$ with $A B$ from either (i) $\frac{A B}{\sin 51}=\frac{A D}{\sin 57}$ or (ii) $\frac{A B}{\sin 51}=\frac{B D}{\sin 72}$ or (iii) $A B^{2}=A D^{2}+B D^{2}-2(A D)(B D) \cos 51$ With Areas for reference (i) $24.046658 \ldots$ (ii) 23.541179 . (iii) $23.7178995 \ldots$ or Area $A B D=\frac{1}{2} \times A B \times B D \times \sin (57)$ with $A B$ as above giving for reference (i) $23.5411793 \ldots$... (ii) $23.0508726 \ldots$ (iii) $23.2222883 .$.

Case 3: Finding length $A D$ using sine rule		First two marks as in Case 2
$\frac{A D}{\sin 57}=\frac{6.8}{\sin 72}$		M1 setting up an equation in AD from the sine rule (For reference: $A D=5.996446861 \ldots$)
$\begin{aligned} & \text { Area }=\text { Area of } \triangle A B D+\text { Area of } \triangle A D F \\ & =\frac{1}{2} \times A D \times " 6.8 " \times \sin (51)+\frac{1}{2} \times A D \times 3 \times \sin (180-51) \end{aligned}$		M1 dep (on both M marks) for the correct method for finding area of triangle $A B F$
	23	A1 (allow 23 or better) - For reference: 22.8345608... Note for the last two marks that there are a number of ways of calculating the area of triangle $A B D$ e.g. Area $A B D$ $=\frac{1}{2} \times A D \times A B \times \sin 72$ with $A B$ from either (i) $\frac{A B}{\sin 51}=\frac{A D}{\sin 57}$ or (ii) $\frac{A B}{\sin 51}=\frac{B D}{\sin 72}$ or (iii) $A B^{2}=A D^{2}+B D^{2}-2(A D)(B D) \cos 51$ With all three areas being 22.8345608... or Area $A B D=\frac{1}{2} \times A B \times B D \times \sin (57)$ with $A B$ as above giving with all areas again being $22.8345608 \ldots$

Method II: Finding $B D$ or $A B$ using trigonometry		In essence for Method II the first mark is for setting up a quadratic equation in $A D$, the second and third marks are for finding either the length $B D$ or $A B$ and the final two marks are for a complete, correct method for calculating the area of triangle ABF
Case 1: Finding $\boldsymbol{B D}$		
$\begin{aligned} & 8.4^{2}=3^{2}+A D^{2}-2(3)(A D) \cos (180-51) \\ & \Rightarrow A D^{2}-(6 \cos 129) A D-61.56=0 \end{aligned}$		M1 for setting up a quadratic equation in $A D$ (For reference: $A D=$ 6.182007686...)
$\frac{B D}{\sin 72}=\frac{A D}{\sin 57}$		M1 dep (on previous M mark) for setting up an equation for $B D$ using sine rule
$B D=7.01$		A1 (7.01 or better) For reference: 7.010426881.
$\begin{aligned} & \text { Area }=\text { Area of } \triangle A B D+\text { Area of } \triangle A D F \\ & =\frac{1}{2} \times A D \times " 7.01 " \times \sin (51)+\frac{1}{2} \times A D \times 3 \times \sin (129) \end{aligned}$		M1 dep (on both previous M marks) for the correct method for finding the area of triangle $A B F$
	24	A1 (allow 24 or better from correct working) - For reference: 24.0466585...
Case 2: Finding $A B$		
$\begin{aligned} & 8.4^{2}=3^{2}+A D^{2}-2(3)(A D) \cos (180-51) \\ & \Rightarrow A D^{2}-(6 \cos 129) A D-61.56=0 \end{aligned}$		M1 for setting up a quadratic equation in $A D$ (For reference: $A D=$ 6.182007686...)
$\frac{A B}{\sin 51}=\frac{A D}{\sin 57}$		M1 dep (on previous M mark) for setting up an equation for $A B$ using sine rule
$A B=5.73$		A1 (5.73 or better) For reference: 5.728497566...
Area $=$ Area of $\triangle A B D+$ Area of $\triangle A D F$ $=\frac{1}{2} \times A D \times " 5.73^{\prime \prime} \times \sin (72)+\frac{1}{2} \times A D \times 3 \times \sin (129)$		M1 dep (on both previous M marks) for the correct method for finding the area of triangle $A B F$
	24	A1 (allow 24 or better from correct working) - For reference: 24.0466585...

Case 3: Finding $\boldsymbol{B D}$ and $\boldsymbol{A B}$				
	$8.4^{2}=3^{2}+A D^{2}-2(3)(A D) \cos (180-51)$ $\Rightarrow A D^{2}-(6 \cos 129) A D-61.56=0$			M1 for setting up a quadratic equation in $A D($ For reference: $A D=$ $6.182007686 \ldots)$
	$\frac{B D}{\sin 72}=\frac{A D}{\sin 57}$ or $\frac{A B}{\sin 51}=\frac{A D}{\sin 57}$			M1 dep (on previous M mark) for setting up an equation for either $A B$ or $B D$ using sine rule
	$B D=7.01$ or $A B=5.73$		A1 $(A B=5.73$ or better or $B D=7.01$ or better) For reference: $A B=5.728497566 \ldots$ or $B D=7.010426881 \ldots$	
			M1 for correct, complete method for finding the area of triangle $A B F($ or as two separate triangles, e.g., $\left.\frac{1}{2}(3)(A D) \sin (180-51)+\frac{1}{2}(B D)(A B) \sin (" 39 "+18)\right)$ 2	

12(a)		-3	1	B1 allow $x=-3$ or $x \neq-3$
(b)		$\frac{1}{2}$	1	B1 oe (e.g. 0.5)
(c)	$\mathrm{g}(x)=2(x+1)^{2} \pm \ldots$			M1 attempting to complete the square. Allow $\mathrm{g}(x)=(\sqrt{2} x+\sqrt{2})^{2} \pm \cdots$
	$y=" 2 "(x+" 1)^{2}-23 "$			M1 getting an equation in completed square form. Or for $\mathrm{g}(x)=(\sqrt{2} x+\sqrt{2})^{2}-3$
	$\frac{y+" 3 "}{" 2 "}=(x+" 1 ")^{2}$			M1dep on at least one method mark being awarded. Allow use of their completed square form. Rearranging to get $\left(x+{ }^{\prime \prime} 1 "\right)^{2}$ on its own. Or for $(\sqrt{2} x+\sqrt{2})^{2}=y+3$
	$\left[\mathrm{g}^{-1}(x)=\right] \sqrt{\frac{x+3}{2}}-1$ oe			A1 need RHS - allow any letter for x and ignore LHS but must take the positive square root (but may recover later).
	$4-\frac{7}{\left(\sqrt{\frac{x+" 3 "}{" 2 "}}-" 1 "+3\right)}=1.2 \mathrm{oe}$			M1dep on previous M being awarded for substituting their $\mathrm{g}^{-1}(x)$ into $\mathrm{f}(x)$ or for $\mathrm{f}^{-1}(1.2)=-1+\sqrt{\frac{x+3}{2}} \Rightarrow-1+\sqrt{\frac{x+3}{2}}=\frac{7}{4-1.2}-3$ (so for putting $\mathrm{g}^{-1}(x)=\mathrm{f}^{-1}(1.2)$ with an attempt at the inverse of f)
	$\frac{7}{2.8}-2=\sqrt{\frac{x+" 3 "}{" 2 "}}$			
	"2"($\left.\frac{7}{2.8}-2\right)^{2}-43 "=x$			M1 dep on previous M being awarded for rearranging and squaring to get x. Or for $\sqrt{\frac{x+3}{2}}=\left(\frac{7}{4-1.2}-3\right)+1 \Rightarrow x=2\left(-\frac{1}{2}+1\right)^{2}-3$
		-2.5	7	A1 (dependent on all previous M marks) - correct answer with no working scores full marks

Alternative				
(c)	$x=\mathrm{gf}^{-1}(1.2)$			M1 for correctly re-arranging to make x the subject in terms of g and f^{-1}
	$\begin{aligned} & y=4-\frac{7}{x+3} \\ & x y+3 y=4 x+12-7 \end{aligned}$			M1 putting $y=$ (or any other letter) and attempt to remove fraction by multiplying all terms by $(x+3)$
	$x(6 y-4)=5-3 y$			M1 for re-arranging to get all x 's on one side and factorising x out (condone sign errors) or $y=4-\frac{7}{x+3} \Rightarrow \frac{7}{x+3}=4-y \Rightarrow x+3=\frac{7}{4-y}$ implies this and the previous M mark
	$\left[\mathrm{f}^{-1}(x)=\right] \frac{5-3 x}{x-4}$			A1 need RHS only - can be equal to any letter (or just the expression) and can use any letter for x oe e.g., $\frac{7}{4-x}-3, \frac{3 x-5}{4-x},-3-\frac{7}{x-4}, \text { etc. }$
	$\begin{aligned} & {\left[\mathrm{f}^{-1}(1.2)\right] }=\frac{5-3 \times 1.2}{1.2-4} \\ & {[=-0.5] } \end{aligned}$			M1 dep (dependent on $2^{\text {nd }}$ and $3{ }^{\text {rd }} \mathrm{M}$ marks) substitute 1.2 into f^{-1}
	$\begin{aligned} & {[\mathrm{g}("-0.5 \mathrm{~s})]} \\ & \quad=2 \times(-0.5)^{2}+4 \times(-0.5)-1 \end{aligned}$			M1 dep on previous M mark - substitute their $\mathrm{f}^{-1}(1.2)$ into $\mathrm{g}(x)$
		-2.5	7	A1

(d)	$\operatorname{gh}(x)=2 x+2^{2}+4 x+2-1$			M1 substitute $x+2$ for x into $2 x^{2}+4 x-1$ or for working with $\mathrm{h}(x)$ and $\mathrm{g}(x)$ with $\mathrm{g}(x)$ in the form $2(x+\alpha)^{2} \pm \beta$ or $(\sqrt{2} x+\alpha)^{2} \pm \beta$ where α and β are positive real numbers
	$\mathrm{m}(x)=2\left(x^{2}+4 x+4\right)+4 x+8-1+3 \mathrm{oe}$			M1 dep multiplying out brackets correctly or for substituting h into $\mathrm{g}(x)$ where $\mathrm{g}(x)$ is in completed square form e.g., $\mathrm{m}(x)=2(x+2+1)^{2}-3+3$ or $(\sqrt{2}(x+2)+\sqrt{2})^{2}-3+3$
	$2(x \pm n)^{2}$ or $n(x+3)^{2}$			M1 dep (on previous M mark) simplify to perfect square form where n is an integer.
		$2(x+3)^{2}$	4	A1 (dependent on all previous M marks) - allow those that state $a=2$ and $b=3$. The correct answer with no working (or with no obvious incorrect working) scores full marks.
(e)	domain of $\mathrm{m}^{-1}=$ range of m			M1 allow 0 or any inequality with any letter with 0 (e.g., $\mathrm{m}<0$) for this mark. Or for correctly re-arranging to $\left[\mathrm{m}^{-1}(x)=\right]-b \pm \sqrt{\frac{x}{a}}$ (accept either + or -).
		$x \geqslant 0$	2	A1 - must be x and correct inequality sign

